3.57 \(\int \frac{a c+a d x+b c x^3+b d x^4}{(a+b x^3)^2} \, dx\)

Optimal. Leaf size=161 \[ -\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} \sqrt [3]{b}}+\frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{2/3}}-\frac{\left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} b^{2/3}} \]

[Out]

-(((b^(1/3)*c + a^(1/3)*d)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)*b^(2/3))) + ((b
^(1/3)*c - a^(1/3)*d)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(2/3)*b^(2/3)) - ((c - (a^(1/3)*d)/b^(1/3))*Log[a^(2/3) -
 a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*b^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0979056, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.233, Rules used = {1586, 1860, 31, 634, 617, 204, 628} \[ -\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} \sqrt [3]{b}}+\frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} b^{2/3}}-\frac{\left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} b^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^2,x]

[Out]

-(((b^(1/3)*c + a^(1/3)*d)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)*b^(2/3))) + ((b
^(1/3)*c - a^(1/3)*d)*Log[a^(1/3) + b^(1/3)*x])/(3*a^(2/3)*b^(2/3)) - ((c - (a^(1/3)*d)/b^(1/3))*Log[a^(2/3) -
 a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*b^(1/3))

Rule 1586

Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]

Rule 1860

Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numerator[Rt[a/b, 3]], s = Denominator[R
t[a/b, 3]]}, -Dist[(r*(B*r - A*s))/(3*a*s), Int[1/(r + s*x), x], x] + Dist[r/(3*a*s), Int[(r*(B*r + 2*A*s) + s
*(B*r - A*s)*x)/(r^2 - r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] && NeQ[a*B^3 - b*A^3, 0] && PosQ[a/
b]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^2} \, dx &=\int \frac{c+d x}{a+b x^3} \, dx\\ &=\frac{\int \frac{\sqrt [3]{a} \left (2 \sqrt [3]{b} c+\sqrt [3]{a} d\right )+\sqrt [3]{b} \left (-\sqrt [3]{b} c+\sqrt [3]{a} d\right ) x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{2/3} \sqrt [3]{b}}+\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{2/3}}\\ &=\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}-\frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{2/3} b^{2/3}}+\frac{1}{2} \left (\frac{c}{\sqrt [3]{a}}+\frac{d}{\sqrt [3]{b}}\right ) \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx\\ &=\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}-\frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{2/3}}+\frac{\left (\sqrt [3]{b} c+\sqrt [3]{a} d\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{2/3} b^{2/3}}\\ &=-\frac{\left (\sqrt [3]{b} c+\sqrt [3]{a} d\right ) \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} b^{2/3}}+\frac{\left (c-\frac{\sqrt [3]{a} d}{\sqrt [3]{b}}\right ) \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} \sqrt [3]{b}}-\frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} b^{2/3}}\\ \end{align*}

Mathematica [A]  time = 0.0450009, size = 124, normalized size = 0.77 \[ \frac{\left (\sqrt [3]{b} c-\sqrt [3]{a} d\right ) \left (2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )-\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )\right )-2 \sqrt{3} \left (\sqrt [3]{a} d+\sqrt [3]{b} c\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{6 a^{2/3} b^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^2,x]

[Out]

(-2*Sqrt[3]*(b^(1/3)*c + a^(1/3)*d)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]] + (b^(1/3)*c - a^(1/3)*d)*(2*L
og[a^(1/3) + b^(1/3)*x] - Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2]))/(6*a^(2/3)*b^(2/3))

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 186, normalized size = 1.2 \begin{align*}{\frac{c}{3\,b}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{c}{6\,b}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{c\sqrt{3}}{3\,b}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{d}{3\,b}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{d}{6\,b}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}+{\frac{d\sqrt{3}}{3\,b}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x)

[Out]

1/3*c/b/(1/b*a)^(2/3)*ln(x+(1/b*a)^(1/3))-1/6*c/b/(1/b*a)^(2/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2/3))+1/3*c/b/
(1/b*a)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))-1/3*d/b/(1/b*a)^(1/3)*ln(x+(1/b*a)^(1/3))+1/6*
d/b/(1/b*a)^(1/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2/3))+1/3*d*3^(1/2)/b/(1/b*a)^(1/3)*arctan(1/3*3^(1/2)*(2/(1
/b*a)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 8.10478, size = 4590, normalized size = 28.51 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="fricas")

[Out]

-1/6*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3
)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*log(1/4*((1/2)^(1/
3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(
3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a^2*b*d - 1/2*((1/2)^(1/3)*(I*s
qrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)
/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*a*b*c^2 + 2*a*c*d^2 + (b*c^3 + a*d^3)*x)
 + 1/12*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(
2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)) + 3*sqrt(1/3)*sq
rt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3
)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a*b + 16*c*d)/(a
*b)))*log(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*
(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a^2*b*
d + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(
2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*a*b*c^2 - 2*a*c
*d^2 + 2*(b*c^3 + a*d^3)*x + 3/4*sqrt(1/3)*(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 -
 a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3
)/(a^2*b^2))^(1/3)))*a^2*b*d + 2*a*b*c^2)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*
c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 -
a*d^3)/(a^2*b^2))^(1/3)))^2*a*b + 16*c*d)/(a*b))) + 1/12*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^
2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (
b*c^3 - a*d^3)/(a^2*b^2))^(1/3)) - 3*sqrt(1/3)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2)
+ (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c
^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a*b + 16*c*d)/(a*b)))*log(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/
(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b
^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a^2*b*d + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^
2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (
b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*a*b*c^2 - 2*a*c*d^2 + 2*(b*c^3 + a*d^3)*x - 3/4*sqrt(1/3)*(((1/2)^(1/3)*(I*s
qrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3) + 1)
/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))*a^2*b*d + 2*a*b*c^2)*sqrt(-(((1/2)^(1/3)
*(I*sqrt(3) + 1)*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3) - 2*(1/2)^(2/3)*c*d*(-I*sqrt(3)
 + 1)/(a*b*((b*c^3 + a*d^3)/(a^2*b^2) + (b*c^3 - a*d^3)/(a^2*b^2))^(1/3)))^2*a*b + 16*c*d)/(a*b)))

________________________________________________________________________________________

Sympy [A]  time = 0.687793, size = 76, normalized size = 0.47 \begin{align*} \operatorname{RootSum}{\left (27 t^{3} a^{2} b^{2} + 9 t a b c d + a d^{3} - b c^{3}, \left ( t \mapsto t \log{\left (x + \frac{9 t^{2} a^{2} b d + 3 t a b c^{2} + 2 a c d^{2}}{a d^{3} + b c^{3}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*d*x**4+b*c*x**3+a*d*x+a*c)/(b*x**3+a)**2,x)

[Out]

RootSum(27*_t**3*a**2*b**2 + 9*_t*a*b*c*d + a*d**3 - b*c**3, Lambda(_t, _t*log(x + (9*_t**2*a**2*b*d + 3*_t*a*
b*c**2 + 2*a*c*d**2)/(a*d**3 + b*c**3))))

________________________________________________________________________________________

Giac [A]  time = 1.08031, size = 216, normalized size = 1.34 \begin{align*} -\frac{{\left (d \left (-\frac{a}{b}\right )^{\frac{1}{3}} + c\right )} \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{3 \, a} + \frac{\sqrt{3}{\left (\left (-a b^{2}\right )^{\frac{1}{3}} b c - \left (-a b^{2}\right )^{\frac{2}{3}} d\right )} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{3 \, a b^{2}} + \frac{{\left (\left (-a b^{2}\right )^{\frac{1}{3}} a b^{3} c + \left (-a b^{2}\right )^{\frac{2}{3}} a b^{2} d\right )} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{6 \, a^{2} b^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^2,x, algorithm="giac")

[Out]

-1/3*(d*(-a/b)^(1/3) + c)*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/a + 1/3*sqrt(3)*((-a*b^2)^(1/3)*b*c - (-a*b^
2)^(2/3)*d)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(a*b^2) + 1/6*((-a*b^2)^(1/3)*a*b^3*c + (-a*
b^2)^(2/3)*a*b^2*d)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a^2*b^4)